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ABSTRACT Let [PE(z)} be a sequence of polynomials sat-
isfying a linear homogeneous recursion whose coefficients
are polynomials in z. Necessary and sufficient conditions are
found, subject to mild nondegeneracy conditions, that a
number x be a limit of zeroes of fPD1 in the sense that there is
a sequence fznj with P&(z.) = 0, z.-.x. An application is
given to a family of polynomials arising in a map-coloring
problem.

1. Main result
Let fPn(z)j be a sequence of polynomials satisfying

k
Pn +k(Z) = -Zfj(z)Pn+k-j(Z) []
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where the fj are polynomials.
The complex number x is said to be a limit of zeroes of

fPnI if there is a sequence fzn I such that Pn(zn) = 0 and zn
- x. Our main result is a necessary and sufficient condition,

subject to two mild nondegeneracy conditions, that x be a
limit of zeroes of Pnj.
For fixed z, the solution of [1] given Po(z), . .., Pk_1(z)

depends on the roots of the characteristic equation

Ak + fj(z)Xk= 0.
j=1

The roots, Xi(z), j = 1 ., k, are algebraic functions of z,
and for any z such that the Xi(z) are distinct,

k

Pn(z) = Z0aj(z)Aj(z) * [2]
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where the ay are determined by solving the system of equa-
tions obtained by letting n = 0,1, . . ., k-1 in [2].
The nondegeneracy conditions needed for our result are

A. Pn I satisfies no recursion of order less than k.
B. There does not exist a constant w with Jwl = 1 and Xi(z)

-Awcj(z) for some i # j.
THEOREM. Suppose that {Pn satisfies [1], A and B. Then

x is a limit of zeroes of fPn I if and only if the roots can be
numbered so that one of the following holds:

(i) 1X1(X)J> IXj(x)I,2 .i < k, and a1(x) = 0
(i) IX1(X)I = IK2(X)J = ... = IXI(X)I > IJXjX)I,

I + 1.j~ kforsomel>2.
2. Comments
A bare outline of the proof, details of which will appear else-
where, is as follows. Suppose, typically, that x is such that
the Xj(x) are distinct, so that the same is true in a neighbor-

hood of x. Referring to [2], it is routine to show that if x is a
limit of zeroes and (ii) fails to hold, then (i) must hold. The
proof of sufficiency involves showing that if (i) or (ii) holds,
then in any neighborhood of x,Qn(z) = Pn(z)/Xi(z) and per-
force Pn(z) has a zero for all sufficiently large n. In each
case, a winding number argument is used; if (i) holds,
Rouche's theorem suffices, while if (ii) holds, a more compli-
cated method is needed. If the X1(x) are not distinct, compli-
cations arise which are essentially technical.

If the condition A does not hold, the Theorem can be ap-
plied to the unique lowest-order recursion satisfied by 1Pn1.
The situation is more interesting when B fails to hold. Vari-
ants of (i) and (ii) exist such that a limit of zeroes must satis-
fy one or the other. As for the question of the sufficiency of
these variants, suffice it to say that if X1 (z) = WX2(z), Wo =
e2 @, and the other Xj satisfy B, then the answer depends on
whether 0 is integral, rational but nonintegral, or irrational.
Moreover, examples show that in the last case the answer
seems to depend upon the degree of transcendence of 0.

3. An application
Given a map M, a coloring of M is an assignment of a color
to each region of M such that contiguous regions are colored
differently. For a positive integer m, let Q(M,m) be the
number of ways M can be colored with m or fewer colors,
regarding as distinct even those colorings which can be ob-
tained from each other by permutations of the colors. G. D.
Birkhoff showed (ref. 1) that there is a polynomial Pm such
that Q(M,m) = Pm(m) for all positive integers m. A polyno-
mial arising in this way is called a chromatic polynomial; the
four-color conjecture amounts to the nonexistence of a chro-
matic polynomial with a zero at 4.

In a paper submitted to the Journal of Combinatorial
Theory, the first two authors consider a sequence of maps
{Mn} consisting of an inner region and an outer region sepa-
rated by n rings, each containing four regions. It is found
that the corresponding sequence fPnI of chromatic polyno-
mials satisfies a recursion of the form [1], with k = 2,

f,(z) = -(z - 3)(z-3 9Z2 + 33z - 48),

f2(z) = 2(z - 3)3(Z - 2XZ2 - 5Z + 5).

When z = 4, the characteristic equation has 2 as a repeated
root, implying in particular that (ii) holds so that 4 is a limit
of zeroes of fPn}. [Moreover, the only other real numbers
which are limits of zeroes of IPn I are 0, 1, 2, 3, and 1k (3 +
v/5). ]
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